ai/qwen3-embedding

Verified Publisher

By Docker

β€’Updated 3 months ago

Qwen3 Embedding: multilingual models for advanced text/ranking tasks like retrieval & clustering.

Model
0

10K+

ai/qwen3-embedding repository overview

⁠Qwen3-Embedding

logo

The Qwen3 Embedding model series is the latest proprietary model of the Qwen family, specifically designed for text embedding and ranking tasks. Building upon the dense foundational models of the Qwen3 series, it provides a comprehensive range of text embeddings and reranking models in various sizes (0.6B, 4B, and 8B). This series inherits the exceptional multilingual capabilities, long-text understanding, and reasoning skills of its foundational model. The Qwen3 Embedding series represents significant advancements in multiple text embedding and ranking tasks, including text retrieval, code retrieval, text classification, text clustering, and bitext mining.


β πŸ“Œ Characteristics

AttributeValue
ProviderAlibaba Cloud
Architectureqwen3
Languages119 languages from multiple families (Indo European, Sino-Tibetan, Afro-Asiatic, Austronesian, Dravidian, Turkic, Tai-Kadai, Uralic, Austroasiatic) including others like Japanese, Basque, Haitian,...
Tool calling❌
Input modalitiesText
Output modalitiesText embeddings
LicenseApache 2.0

⁠Available model variants

Model variantParametersQuantizationContext windowVRAMΒΉSize
ai/qwen3-embedding:4B

ai/qwen3-embedding:4B-Q4_K_M

ai/qwen3-embedding:latest
4BMOSTLY_Q4_K_M41K tokens3.75 GiB2.32 GB
ai/qwen3-embedding:0.6B-F160.6BMOSTLY_F1633K tokens2.27 GiB1.11 GB
ai/qwen3-embedding:4B-F164BMOSTLY_F1641K tokens8.92 GiB7.49 GB
ai/qwen3-embedding:8B-Q4_K_M8BMOSTLY_Q4_K_M41K tokens5.80 GiB4.35 GB
ai/qwen3-embedding:8B-F168BMOSTLY_F1641K tokens15.54 GiB14.10 GB

ΒΉ: VRAM estimated based on model characteristics.

latest β†’ 4B


⁠🐳 Using this model with Docker Model Runner

First, pull the model:

docker model pull ai/qwen3-embedding

Then run the model:

curl --location 'http://localhost:12434/engines/llama.cpp/v1/embeddings' \
--header 'Content-Type: application/json' \
--data '{
    "model": "ai/qwen3-embedding",
    "input": "hello world!"
  }'

For more information, check out the Docker Model Runner docs⁠.


⁠MTEB (Multilingual)
ModelSizeMean (Task)Mean (Type)Bitxt MiningClass.Clust.Inst.Retri.Multi. Class.Pair. Class.Rerank Retri.STS
NV-Embed-v27B56.2949.5857.8457.2940.801.0418.6378.9463.8256.7271.10
GritLM-7B7B60.9253.7470.5361.8349.753.4522.7779.9463.7858.3173.33
BGE-M30.6B59.5652.1879.1160.3540.88-3.1120.180.7662.7954.6074.12
multilingual-e5-large-instruct0.6B63.2255.0880.1364.9450.75-0.4022.9180.8662.6157.1276.81
gte-Qwen2-1.5B-instruct1.5B59.4552.6962.5158.3252.050.7424.0281.5862.5860.7871.61
gte-Qwen2-7B-Instruct7B62.5155.9373.9261.5552.774.9425.4885.1365.5560.0873.98
text-embedding-3-large–58.9351.4162.1760.2746.89-2.6822.0379.1763.8959.2771.68
Cohere-embed-multilingual-v3.0–61.1253.2370.5062.9546.89-1.8922.7479.8864.0759.1674.80
gemini-embedding-exp-03-07–68.3759.5979.2871.8254.595.1829.1683.6365.5867.7179.40
Qwen3-Embedding-0.6B0.6B64.3356.0072.2266.8352.335.0924.5980.8361.4164.6476.17
Qwen3-Embedding-4B4B69.4560.8679.3672.3357.1511.5626.7785.0565.0869.6080.86
Qwen3-Embedding-8B8B70.5861.6980.8974.0057.6510.0628.6686.4065.6370.8881.08

Note: For compared models, the scores are retrieved from MTEB online leaderboard on May 24th, 2025.


Tag summary

Content type

Model

Digest

sha256:1c4a0861a…

Size

4.4 GB

Last updated

3 months ago

docker model pull ai/qwen3-embedding:8B-Q4_K_M

This week's pulls

Pulls:

1,273

Last week